Soltan DM & et al. Inhibitory effect of Lactobacillus plantarum and Lactobacillus fermentum isolated from the faeces of healthy infants against nonfermentative bacteria causing nosocomial infections. New Microbes New Infect. 2017; 15: 9-13.
Motaghi B & Mojafipour S. Outer Membrance Protein D Gene in clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance. Journal of Fasa University of medical Sciences. 2016; 5(4): 501-507.
Tang Y & et al. Genotyping of Pseudomonas aeruginosa Type III Secretion System Using Magnet ic EnrichmentMultiplex Polymerase Chain Reaction and Chemiluminescence. Journal of Biomedical Nanotechnology.2016; 12(4): 762-769.
Mokari M, Owlia P, Marashi SMA, Saderi H & Dehghan Zadeh Z. The effect of supernatant of Saccharomyces cerevisiae yeast on preventing the growth of Pseudomonas aeruginosa bacteria and its effect on exotoxin S gene expression in Pseudomonas aeruginosa bacteria by Real-Time PCR methodd. Daneshvar Medicine: Basic and Clinical Research Jouranl. 2018; 25(6): 67-74.
BouillotS,AttréeI & HuberP. Pharmacological Activation of Rap1 Antagonizes the Endothelial Barrier Disruption Induced by Exotoxins ExoS and ExoT of Pseudomonas aeruginosa. Infect Immun. 2015; 83(5): 1820-1829.
Pavlovskis OR, Iglewski BH & Pollack M. Mechanism of action of Pseudomonas aeruginosa exotoxin A in experimental mouse infections: adenosine diphosphate ribosylation of elongation factor 2. Infection and Immunity. 1978; 19(1): 29-33.
Donelli G & Vuotto C. Biofilm based infections in long term care facilities. Future Microbiology. 2014; 9: 175-188.
Tran QH, Nguyen VQ & Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences:Nanoscience and Nanotechnology. 2013; 4(3).
Mortazavi H, Nakhaei Moghaddam M & Abadi NS. Study of the Effect of Silver Nanoparticles on Biofilms Formation by Staphylococcus epidermidis. Journal of Rafsanjan University of Medical Sciences. 2015; 14(2): 125-136.
Björndahl MR, Cao LJ, Nissen S, Clasper LA, Johnson Y, Xue Z & et al. Lnsulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proceedings of the National Academy of Sciences. 2005; 102(43): 15593-15598.
Heinlaan M, Lvask A, Blinov L, Dubourgier HC & Kahur A. Toxicity of nanosized and bulk Zno, Cuo and Tio 2 to bacteria vibrio Fischer and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308-1316.
Fernando S, Gunasekara T & Holton J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 2018; 8(1): 2-11
Zargar M & Mohamadeibandarei N. Silver nanoparticles and their applications. Applied Biology. 2013; 3(11): 13-31.
Kavyani B, Alikhani MY, Arabestani MR, Moradkhani SH & Taheri M. The effect of garlic extract on the expression of genes elastase andexotoxin A in Pseudomonas aeruginosa. Tehran University Medical Journal. 2016; 74(8): 584-590.
Elgayyar M, Draughon FA, Golden DA & Mount JR. Antimicrobial activity of Essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection. 2001; 64(7): 1019-1024.
Pirigharaghie T & Sadatshandiz A. The Inhibitory Effects of Silver Nanoparticles on Bap Gene Expression in Antibiotic-Resistant Acientobacter bumanni Isolates using Real-Time PCR. Scientific Journal of Ilam University of Medical Sciences. 2018; 26(4): 175-185.
Tong Zh & et al. Modified protocol for RNA extraction from different peach tissues suitable for gene isolation and Real-Time PCR analysis. Molecular Biotechnology. 2012; 50(3): 229-236.
Azizi O & et al. Molecular analysis and expression of bap gene in biofilm forming multi drug-resistant Acinetobacter baumannii. Report of Biochemistry Molecular Biology. 2016; 5: 68-74.
Liesje S, Bart D, Paul V, Benny F & Pyck G. The Antibacterial Activity of Biogenic Silver and Its Mode of Action. World Journal of Microbialogy and Biotechnology. 2011; 31(2): 113-189.
Flockton, TR, Schnorbus L, Araujo A, Adams J, Hammel M & Perez LJ. Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles. Pathogens. 2019; 8(2): 55.
Yuan YG, Peng QL & Gurunathan S. Effects of silver nanoparticles on multiple
drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. International journal of molecular sciences. 2017; 18(3): 569.
Darabpour E, Doroodmand MM, Halabian R & Imani Fooladi AA. Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on Pseudomonas aeruginosa Biofilm and Expression of toxA Gene. Microbial Drug Resistance. 2019; 25(4): 594-602.
Singh R, Nadhe S, Wadhwani S, Shedbalkar U & Chopade B. A nanoparticles for control of biofilms of Acinetobacter species. Multidisciplinary Digital Publishing Institute. 2016; 9(5): 383.
Hendiani S, Abdiali A, Mohammadi P. Comparison of two methods for quantification of Acinetobacter baumannii biofilm formation. Biological Journal of Microorganism. 2014; 2(8): 51-56.
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping J & Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. Journal of nanobiotechnology. 2014; 12(2): 2-7
Camporotondi D, Foglia M, Alvarez G, Mebert A, Diaz L, Coradin T & Desimone M. Antimicrobial properties of silica modified nanoparticles. Microbial Pathogens and Strategies for Combating Them. Science, Technology and Education; Microbiology Book Series. 2013: 283-290.
Yeo Y, Ito T, Bellas E, Highley CB, Marini R & Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Annals of surgery. 2007; 245(5): 819.